Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy.
نویسندگان
چکیده
We present a new method to extract resistivity and doping concentration of semiconductor materials from Scanning Microwave Microscopy (SMM) S11 reflection measurements. Using a three error parameters de-embedding workflow, the S11 raw data are converted into calibrated capacitance and resistance images where no calibration sample is required. The SMM capacitance and resistance values were measured at 18 GHz and ranged from 0 to 100 aF and from 0 to 1 MΩ, respectively. A tip-sample analytical model that includes tip radius, microwave penetration skin depth, and semiconductor depletion layer width has been applied to extract resistivity and doping concentration from the calibrated SMM resistance. The method has been tested on two doped silicon samples and in both cases the resistivity and doping concentration are in quantitative agreement with the data-sheet values over a range of 10(-3)Ω cm to 10(1)Ω cm, and 10(14) atoms per cm(3) to 10(20) atoms per cm(3), respectively. The measured dopant density values, with related uncertainties, are [1.1 ± 0.6] × 10(18) atoms per cm(3), [2.2 ± 0.4] × 10(17) atoms per cm(3), [4.5 ± 0.2] × 10(16) atoms per cm(3), [4.5 ± 1.3] × 10(15) atoms per cm(3), [4.5 ± 1.7] × 10(14) atoms per cm(3). The method does not require sample treatment like cleavage and cross-sectioning, and high contact imaging forces are not necessary, thus it is easily applicable to various semiconductor and materials science investigations.
منابع مشابه
Scattering mechanism of nonmagnetic phase on nano diluted magnetic semiconductors (DMS)
This paper shows the scattering mechanism at diluted magneticsemiconductors. The doped magnetic atom produces a scattering potential due to becoupled of itinerant carrier spin of host material with magnetic momentum of the dopedmagnetic atom. Formulas of scattering event were rewritten by the plane waveexpansion and then the electron mobility of DMS was calculated. Calculations showKondo effect...
متن کاملEffects of Temperature on Radiative Properties of Nanoscale Multilayer with Coherent Formulation in Visible Wavelengths
During the past two decades, there have been tremendous developments in near-field imaging and local probing techniques. Examples are the Scanning Tunneling Microscope (STM), Atomic Force Microscope (AFM), Near-field Scanning Optical Microscope (NSOM), Photon Scanning Tunneling Microscope (PSTM), and Scanning Thermal Microscope (SThM).Results showed that the average reflectance for a dopant con...
متن کاملخواص ساختاری و ابررسانایی نمونههای (YBa2Cu3-xMxOy (M=Ag, Al
Samples of YBa2Cu3-xAgxOy with x=0, 0.1, 0.15, 0.2, 0.3 and samples of YBa2Cu3-xAlxOy with x=0, 0.01, 0.02, 0.03 and 0.045 are prepared by the sol-gel method. Structural and superconducting properties of samples are studied by electrical resistivity (R-T), X-ray diffraction (XRD) and scanning electron microscopy (SEM). All the samples show transition to superconducting state and the transitio...
متن کاملQuantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy
In the last years there has been a renewed interest for zinc oxide semiconductor, mainly triggered by its prospects in optoelectronic applications. In particular, zinc oxide thin films are being widely used for photovoltaic applications, in which the determination of the electrical conductivity is of great importance. Being an intrinsically doped material, the quantification of its doping conce...
متن کاملMechanical writing of n-type conductive layers on the SrTiO3 surface in nanoscale
The fabrication and control of the conductive surface and interface on insulating SrTiO3 bulk provide a pathway for oxide electronics. The controllable manipulation of local doping concentration in semiconductors is an important step for nano-electronics. Here we show that conductive patterns can be written on bare SrTiO3 surface by controllable doping in nanoscale using the mechanical interact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 35 شماره
صفحات -
تاریخ انتشار 2015